Stock Price Prediction Using Quantum Neural Network
نویسنده
چکیده
Quantum Neural Network (QNN) can improve upon the inadequacies of the classical neural network (CNN). The CNN requires a huge memory and needs more computational power. A new field of computation is emerging which integrates quantum computation with CNN. A quantum inspired hybrid model of quantum neurons and classical neurons is proposed. This paper details an approach, perhaps the first attempt; towards stock price prediction using this concept is evolved. The stock price prediction initiates the use of QNN in financial engineering applications
منابع مشابه
Multi-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملShort-term Prediction of Tehran Stock Exchange Price Index (TEPIX): Using Artificial Neural Network (ANN)
The main objective of this study is to find out whether an Artificial Neural Network (ANN) will be useful to predict stock market price, which is highly non-linear and uncertain. Specifically, this study will focus on forecasting TSE Price Index (TEPIX) as the most significant index of Iran Stock Market. Many data have been used as inputs to the network. These data are observations of 2000 day...
متن کاملOptimizing the Prediction Model of Stock Price in Pharmaceutical Companies Using Multiple Objective Particle Swarm Optimization Algorithm (MOPSO)
The purpose of this study is to optimize the stock price forecasting model with meta-innovation method in pharmaceutical companies.In this research, stock portfolio optimization has been done in two separate phases.The first phase is related to forecasting stock futures based on past stock information, which is forecasting the stock price using artificial neural network.The neural network used ...
متن کاملP/E Modeling and Prediction of Firms Listed on the Tehran Stock Exchange; a New Approach to Harmony Search Algorithm and Neural Network Hybridization
Investors and other contributors to stock exchange need a variety of tools, measures, and information in order to make decisions. One of the most common tools and criteria of decision makers is price-to earnings per share ratio. As a result, investors are in pursuit of ways to have a better assessment and forecast of price and dividends and get the highest returns on their investment. Previous ...
متن کامل